Full Length Research Paper

Functional neuroimaging in psychiatry

Krishan Kumar¹* and Rajnish Kumar²

¹Computational Neuro Science and Neuro Imaging Centre, National Brain Research Center, Manesar, India.
²Consultant Neurologist, Gurgaon

Accepted 20 April, 2013

Functional neuroimaging has rapidly developed as a powerful tool in cognitive neuroscience and, in recent years, has seen widespread application in psychiatry. Although, such studies have produced evidence for abnormal patterns of brain response in association with some pathological conditions, the core pathophysiologicals remain unresolved. Although, imaging techniques provide an unprecedented opportunity for investigation of physiological functioning of the living human brain, there are fundamental questions and assumptions which are yet to be addressed. We considered the difficulties that accompany the most frequent application of these techniques; an attempt to identify responses of the brain to changing tasks or contexts and explore how these responses are affected by psychiatric illness. These are critical issues. If they cannot be addressed, functional imaging approaches must confine their ultimate aims to diagnosis and accept that they will never clarify etiology. If the questions remain unanswered, the techniques, no matter how complex their technical advances, will inevitably produce ambiguous findings such as; 1) Has the psychiatric disorder under study been appropriately specified? 2) Has the chosen task enabled a clear and unambiguous manipulation of the psychological processes that we wish to study? 3) How may we interpret changes in brain activations in the patient group?

Key words: Functional neuroimaging, psychiatry, EEG, MRI PET.

INTRODUCTION

Since the development of first functional brain imaging technique used in human beings by Seymour Kety in 1948, functional neuroimaging has advanced in such a way that today, it provides the crucial link between clinical features of several psychiatric disorders and their corresponding dysfunctional brain systems. By showing the various stages in the cascade from neuronal activity to behavior, functional neuroimaging scores over the conventional structural neuroimaging as the latter points out only the details of structures of brain without offering any implication they have on behavior. Functional neuroimaging quite rightly, therefore, in considered the spearhead of a neuropsychiatric perspective.

Today, functional neuroimaging is used in research purposes. Though, limited by cost, it can also be used as an important diagnostic aid. Moreover, investigation like transcranial magnetic stimulation offers the advantage of its use as an efficacious intervention technique as well. With the advances in technology, various devices for detecting more specific functional aspects came up. Now to select a suitable mode of investigation we have plenty of options to choose from for example, PET, SPECT, xenon enhanced CT, fMRI to detect blood flow and perfusion; MRS and PET to gain information about metabolism; SPECT and PET for ligands and neuroreceptor imaging and lastly, EEG, MEG and TMS for electrophysiology.

Surprisingly, unlike the measurement of brain structure, measurement of brain function has not been used much extensively in clinical practice. Its main application has been in research, though, clinicians opine that alterations in brain function must at some level underlie all disorders in psychiatry. So, in the near future, it can be expected that functional neuroimaging will gain popularity among the clinicians and will gain the status of an essential
rather than optional mode of investigation.

FUNCTIONAL NEUROIMAGING TECHNIQUES

Positron Emission Tomography (PET) is named from its use of positron emitting isotopes to image brain functioning. Positron emitting isotopes are very short lived radioactive entities including oxygen 15 (15O), nitrogen 13 (13N), carbon 11 (11C), and fluorine 18 (18F). The radioactive isotopes are incorporated into specific molecules to study cerebral metabolism, blood flow, and neuroreceptors. Most commonly used is (15O) water for cerebral blood flow studies or (18F) fluorodeoxyglucose (FDG) to image metabolism (Berman and Weinberger, 1991; Nadeau and Crosson, 1995).

Radioactive agents are intravenously injected into the subject, whose head is positioned within a radiation detector. The radioactive isotope decays within the brain, releasing a positron. The positron travels a short distance and collides with an electron resulting in the emission of two photons that travel at 180° to each other at the speed of light. The photons are detected at the opposite sides of the head simultaneously, and the location of the emitting positron can thus, be calculated (Berman and Weinberger, 1991).

Advantages

Positron Emission Tomography (PET) is used extensively to understand normal brain functioning, to image neurotransmitter and their receptor, and cerebral blood flow. It has greater spatial resolution than SPECT. Only PET can measure cerebral glucose metabolism. Because of shorter half life of tracer, PET studies can often be conducted several times in a day.

Single photon Emission computed tomography (SPECT)

SPECT also uses radioactive compounds to image brain activity. Like PET, SPECT derives its name from the type of radioisotope involved; compounds that produce only one photon per disintegration. The radioisotopes are readily available from commercial sources. This makes SPECT available in most clinical centres. However, because SPECT imaging depends on a single photon being released, its spatial resolution is less than that of PET.

Advantages

Single photon Emission computed tomography (SPECT) produces both quantitative and qualitative measures of cerebral blood flow. It may be beneficial in diagnosing dementing illness, and is more affordable than PET.

Functional magnetic resonance imaging (fMRI)

Functional MRI couples the exquisite spatial resolution of structural MRI with the ability to image areas related to neural activity. It does this non-invasively without the use of radioactive agents. When a localized region of brain tissue becomes active, it uses oxygen and glucose and produces certain metabolic by-products. In these areas of increased neural activity, the metabolism and blood flow increase with the increased energy demands. The cerebrovascular physiology of the brain is such that local blood flow and volume increases to supply the needed fuel and remove the metabolic waste products. Although, the exact mechanism remains to be determined, many scientists believe that the supply of oxygen is much greater than what neurons utilize. This result is an actual increase in the concentration of oxygenated hemoglobin compared with deoxygenated hemoglobin in areas of neural activity.

Oxygenated hemoglobin is less paramagnetic and has increased intensity (looks brighter) as compared with deoxygenated hemoglobin on images created with T2 weighted pulse sequences; fMRI uses this Blood Oxygen Level Dependent (BOLD) effect to image changes in neural activity (Kwong et al., 1992). In fMRI, measures of activation are always relative as they do not directly assess absolute changes in blood flow, thus, cognitive tests are given which serves as probes to activate specific neural network.

Advantages

Because Functional Magnetic Resonance Imaging (fMRI) requires no radiation and can be completely non-invasive, a participant can be imaged severally. It also removes ethical constraints about imaging children and adolescent with psychiatric illnesses; fMRI is performed in standard, clinically available 1.5 Tesla, magnetic resonance scanner and as such a readily available mode of investigation.

Magnetic resonance spectroscopy (MRS)

MRS is performed in the same scanners as structural and functional MRI. However, by altering the scanning parameters, the signal represents chemical entities from brain areas. The response of an atom in a magnetic field is characteristic, based on the number and nature of its subatomic particles, as well as, its unique molecular environment. Spectra are obtained that are characteristic
for nuclei within certain molecules (McClure et al., 1995). This principle is employed in MRS to study the concentration of brain metabolites. Typically, spectra are obtained from a number of nuclei, including 1H, 13C, 23Na, 7Li, and 31P.

In psychiatry, investigators are primarily using 1H and 31P MRS. Proton (1H) spectroscopy can distinguish N-acetyl aspartate (NAA), creatine and phosphocreatine, and phosphatidylcholine. Signals can be obtained from glutamate, GABA, lactate, and inositol phosphates, although, these signals may be difficult to adequately resolve (Narayana and Jackson, 1991). NAA is found in neurons and is absent in most glial cell lines. Decreases in NAA may reflect a diminished number or density of neurons; NAA levels decrease proportionate to the brain loss in neurodegenerative disorders (Maier, 1995; Renshaw et al., 1995). Creatine and phosphocreatine are important energy substrates, and phosphatidylcholine is an important component of cell membranes (Narayana and Jackson, 1991).

MRS with 31P detects the relative tissue concentrations of certain phosphorous metabolites, including those involved in energy and phospholipid metabolism (Waddington et al., 1990). Resonances are obtained from the precursors and breakdown products of membrane phospholipids (phosphomonoesters and phosphodiesters, respectively), which uncover potential abnormalities in membrane turnover. To reflect energy metabolism, 31P MRS senses phosphocreatine, adenosine triphosphate, adenosine diphosphate, and inorganic orthophosphate; intracellular pH can also be assessed (Pettegrew et al., 1991).

Advantage

Magnetic resonance spectroscopy (MRS) is able to measure concentration of some drugs in the brain including lithium and fluoxetine.

Magnetoencephalography (MEG)

Reading of brain electromagnetic activity is the basis of MEG. All electrical sources generate magnetic field. Electrical sources within the brain have been modelled as electrical dipoles consisting of assemblies of neurons oriented in tangential (that is, parallel to the skull) or radial (that is, perpendicular to the skull) direction. MEG utilizes a device called Superconducting Quantum Interference Device (SQUID) managetometer to detect these magnetic fields within the brain. This is a super cooled detection coil that is extremely sensitive to low intensity magnetic fields generated by dipoles within the brain.

Advantage over EEG

SQUID need not be in contact with the scalp and it is insensitive to the effects of muscle tension and activity such as:

1. Relatively unaffected by the interposed structure like skull, scalp.
2. Detects sources deep within the brain.
3. Relatively unaffected by surrounding fields.

Electroencephalography (EEG)

A method of recording graphically the electric activity of the brain, particularly, the cerebral cortex is by the means of electrodes attached to the scalp. The conventional EEG parameters are obtained from averaged EEG power spectra, based on periods of time and broad fixed frequency band for a specific lead. This approach of averaging of EEG signal masks the dynamic and temporal structure of EEG, leading to complicated data interpretation.

Technical advancement of EEG equipment in the last three decades has also facilitated quantitative analysis of EEG data. Quantitative EEG, also known as neurometrics or brain mapping, is a method of paperless recording using computer-based instrumentation. There are various advantages compared to conventional EEG including storage, acquisition, quantification, automatic spike detection, and automatic event detection. Quantitative EEG has provision for making changes in the recorded parameters, such as montage, filter.

Spectral analysis

In this technique, a series of segments (epochs) of EEG data (commonly one to four seconds in length) are processed through Fourier transformation to calculate the energy (power) in the signal that can be accounted for by a series of sinusoidal waveform of different amplitudes and frequencies. It represents the state of neuronal activity in the brain.

Coherence or synchronization

It measures synchronized brain electrical activity from different region within an individual which reflects both the structural and functional connections between brain areas. A decrease in coherence between two regions presumably indicates a decrease in their functional connection and vice-versa. Used for assessing anatomical/functional binding and metabolism in brain.

Evoked potentials (EP)

In this paradigm, electrical activity is recorded while the subjects are exposed to repetitive visual (that is, flashes
of light or pattern), auditory (that is, clicks or tones) or other stimuli (that is, electrical stimulation of the skin). A computer averages the response to time locked, repeated stimuli, thus, enhancing the signal evoked by the stimuli while averaging out other brain activity unrelated to the stimuli. The resulting display is a voltage waveform of the average response potentials. These potentials appear as a series of positive and negative waveforms occurring at specific time intervals following a stimulus and are labelled according to their polarities (P for positive and N for negative) and latencies from time of the stimulus (in milliseconds). EP is used to assess the rapidity and level of processing of brain.

Transcranial magnetic stimulation

Transcranial Magnetic Stimulation (TMS) refers to an in vivo technique of delivering magnetic pulses to the cortex with a handheld stimulating coil applied directly to the head. The equipment necessary for delivering TMS consists of two parts: a stimulator, which generates brief pulses of strong electrical currents whose frequency and intensity can be varied, and a stimulation coil connected to the stimulator. TMS stimulates the cortex focally and painlessly by creating a time-varying magnetic field. This localized pulsed magnetic field over the surface of the head induces electrical currents in the brain, which then depolarizes underlying superficial neurons. TMS methods have been applied in a number of ways to probe the function of various aspects of the normal and abnormal brain in human subjects such as:

i) Cortical stimulation.
ii) Cortical and regional connectivity.
iii) Cortical plasticity.
iv) Cognition.

NEUROIMAGING FINDINGS IN MAJOR PSYCHIATRIC ILLNESSES

Psychotic disorders (Schizophrenia)

PET and SPECT studies

During the resting state: The first functional cerebral abnormality reported in older schizophrenic patients was a reduction in frontal blood flow, or hypofrontality (Ingvar and Franzen, 1974). These findings spawned a number of studies; patient populations have ranged from acutely ill, never medicated adolescents to patients receiving long term medication. Hypofrontality is an inconsistent finding and probably depends on many factors (Berman and Weinberger, 1991; 1999; Chabrol et al., 1986; Cleghorn et al., 1989; Early et al., 1987; Gur et al., 1995; Paulman et al., 1990, Tamminga et al., 1992). In fact, some investigators find hyperfrontality in unmedicated schizophrenic patients (Ebmeier et al., 1993). Several PET studies implicate basal ganglia dysfunction in schizophrenia (Wong et al., 1986; Liddle et al., 1992; Cleghorn et al., 1992).

During cognitive tasks: By imaging participants during the performance of tasks, cerebral activity patterns reflect a state with less variability due to random, task independent thought processes. Schizophrenic individual invariably show dysfunction within fronto-parietal-temporal networks regardless of the task used (O’Driscoll et al., 1999; Guenther et al., 1991; Cohen et al., 1988; Schroder et al., 1995; Carter et al., 1997; Gur et al., 1994; Weinberger et al., 1988; Rubin et al., 1991; Berman et al., 1992; Andreasen et al., 1992).

fMRI studies

Overall studies have reported reduced limbic activation in the schizophrenia for given cognitive task (Frith et al., 1995; Honey et al., 2000).

MRS studies

31P MRS has been used to investigate membrane components and high energy phosphate compounds in the left dorsolateral prefrontal cortex of drug naive patients with first episode schizophrenia patients with chronic schizophrenia, and healthy control subjects. All patients with schizophrenia, whether acute, drug naive, or chronic, showed decreased levels of phosphomonoesters, building blocks for cell membranes (Pettegrew et al., 1991; Stanley et al., 1995). However, other groups have reported increased phosphodiester in chronic patients (Deicken et al., 1994).

In the study of 1H MRS, schizophrenic patients showed reduced NAA in mesial temporal lobe and dorsolateral prefrontal cortex (Bertolino et al., 1995; Renshaw et al., 1995; Buckley et al., 1994; Bertolino et al., 2000; Delamillieure et al., 2000; Deicken et al., 2000)

EEG studies

Numerous qualitative studies indicate abnormal conventional EEG findings in 20 to 60% of schizophrenic patients (Small, 1993; Small et al., 1984). Evaluation of EEG and QEEG literature on schizophrenia is complicated by the evident heterogeneity of the illness. Most often, the reported abnormalities have been delta and/or theta excesses in frontal areas (Primavera et al., 1994; Fenton et al., 1980; Morihisa et al., 1983; Dierks et al., 1989; Kemali et al., 1980; Galderisi et al., 1992), a decreased mean frequency and lower power in the alpha band (Small et al., 1984; Shagass, 1977; Fenton et al.,
1980; Merrin and Floyd, 1992), and increased beta power (Laurian et al., 1984; Kemali et al., 1986; Karson et al., 1988;). Increased anterior coherence also has often been reported (Nagase et al., 1992).

In this institute, Agarwal and Nizamie (2003) found a significantly less inter-hemispheric gamma coherence across all brain areas in schizophrenics and further Bandopadhyayya and Nizamie (2005) found more so in temporal areas.

ERP studies

The P300 ERP, a positive deflection occurring approximately 300 milliseconds after the introduction of a stimulus is regarded as a putative biological marker of risk for schizophrenia (Bharath et al., 2000; Blackwood, 2000). The P300 amplitudes are smaller in patients with schizophrenia and is one of the most replicated electrophysiological findings (Bruder, 1999; McCarley et al., 1997). Latency of P300 was prolonged and value was maximum in left central (C3) and frontal region in drug naïve and drug free schizophrenics (Simlai and Nizamie, 1998).

Abnormalities in the N400 amplitude in schizophrenia have been reported by Niznikiewicz et al. (1997), Nestor et al. (1997) and Mathalon et al. (2000). Investigators suggest that individuals with schizophrenia do not use the context of the preceding portion of the sentence and fill in responses to phrases based on the immediately preceding word rather than the whole sentence or passage.

MRS studies

MRS studies have reported elevated choline concentrations in the striatum of bipolar patients (Strakowski, 2002). Decreased NAA in the dorsolateral prefrontal cortex was found in bipolar children and adolescents with parental bipolar disorder (Chang et al., 2003), in bipolar adults (Winsberg et al., 2000) and in manic patients. Davanzo et al. (2001) and Cecil et al. (2003) found a non-significant elevation in myo-inositol concentration in bipolar children as compared with healthy subjects, suggesting that elevated myo-inositol may be a biological marker for early onset affective disorder.

Using MRS to examine medication effect, Moore et al. (1999) reported a decrease in anterior cingulated myo-inositol following lithium treatment. Lithium has also been shown to increase NAA in frontal, temporal, parietal and occipital lobes of bipolar patients, which have been interpreted to suggest that lithium, may be neuroprotective (Moore et al., 2000; Silverstone et al., 2003).

Mood disorder

PET and SPECT studies

Studies revealed decreased blood flow and metabolism in Subgenual Prefrontal Cortex (SGPFC) (Drevets et al., 1997) in bipolar depressed patients. Whereas, manic patients showed increase in SGPFC (Blumberg et al., 2000; Strakowski, 2002) and basal ganglia (O’Connell et al., 1995; Blumberg et al., 2000).

EEG studies

The incidence of abnormal conventional EEG findings in mood disorders appears to be substantial, ranging from 20 to 40% (Small, 1993; Taylor and Abrams, 1981; Cook et al., 1986; McElroy et al., 1988) higher in 1) manic than depressed patients, 2) female than male bipolar patients, and 3) non-familial cases with late-age onset. EEG studies reported that small sharp spikes and paroxysmal events are often found, especially, on the right hemisphere (Struve et al., 1977).

There is a broad consensus in QEEG studies that increases in alpha or theta power, as well as, asymmetry and hypocoherence in anterior regions appear most often in unipolar depressed patients (Monakhov and Perris, 1980; Itil, 1983; Nystrom et al., 1986; Knott and Lapiere, 1987; Pollock and Schneider, 1990; Nieber and Schlegel, 1992; Ramanan and Nizamie, 1997). Bipolar patients often display decreased alpha (Knott and Lapiere, 1987; Clementz et al., 1994; Das and Nizamie, 2001) but increased beta activity (Prichep and John, 1986; John et al., 1988; Das and Nizamie, 2001).

Together, these studies support a model of bipolar disorder that involves dysfunction within subcortical (Striatal thalamic) prefrontal networks and the associated limbic modulating regions (amygdala, midline cerebellum).
Functional imaging in personality disorder

Schizotypal personality disorders

SPECT study by Trestman et al. (1995) revealed greater increase in blood flow to dorsolateral prefrontal cortex (DLPFC) during cognitive task. PET studies showed asymmetry in striatal metabolism (Siegal et al., 1994) and lower glucose metabolism in anterior cingulate (Haznedar et al., 1995). These findings suggest abnormal striated function in schizotypal personality disorder which reflects a particular form of dopaminergic dysfunction in schizophrenia spectrum illness.

Borderline personality disorder

Goyer et al. (1994) examined regional cerebral metabolic rates of glucose (rCMRG) in patients with personality disorder and they found higher glucose metabolism in the prefrontal cortex, lower metabolism in inferior portions of the frontal cortex, the posterior cingulated, and the left parietal area.

Antisocial personality disorder

A study by Intrator (1993) utilizing SPECT found that ASPD had more ventral occipital and less temporoparietal cortical activation than normal with the effective task. Thus, this study provides support for the hypothesis that ASPD respond abnormally to stimuli with aversive emotional significance.

Anxiety disorder

Panic disorder

PET studies revealed abnormal asymmetry in orbitofrontal and hippocampal region (Nordahl et al., 1998; Bisaga et al., 1998). MRS studies showed increased brain lactate level in patients with panic disorder (Dager et al., 1995). Another study focusing on frontal lobe revealed phosphocreatine asymmetry with levels on the left greater than those on the right (Shioiri et al., 1996). qEEG showed paroxysmal activity in temporal lobe (Jabourian et al., 1992).

PTSD

PET study showed increased activity in amygdala, orbitofrontal cortex, insular cortex, anterior temporal pole and anterior cingulated cortex was seen in subjects of PTSD (Rauch et al., 1996; Shin et al., 1999). Though, Bremner et al. (1999) reported deactivation in medial prefrontal cortex in similar population.

Obsessive compulsive disorders

PET studies: Major PET studies found elevated metabolism, or rCBF in the orbitofrontal cortex (Baxter et al., 1988; Swedo et al., 1989; Sawle et al., 1991) or thalamus (Perani et al., 1995; Swedo et al., 1989). There was significant decrease in glucose metabolism in these areas after treatment with clomipramine (Benkelfat et al., 1990), fluoxetine (Baxter et al., 1992) and paroxetine (Saxena et al., 1999).

SPECT studies: SPECT studies have found that patient with OCD have increased rCBF in frontal cortex (Machlin et al., 1991; Rubin et al., 1992) and decreased in basal ganglia specially caudate nucleus (Adams et al., 1989; Lucey et al., 1997). Elevated HAMPAO uptake in OCD patients decreased significantly after treatment with fluoxetine (Hoehn-Saric et al., 1991) and Clomipramine (Rubin et al., 1992).

MRS studies: Bartha et al. (1998) found significantly lower relative level of NAA in the left and right striatum of patient with OCD as compared with healthy control subjects.

EEG studies: Increased theta activity has been reported in OCD (Perros et al., 1992; Silverman and Loyalchik, 1990). Sarkar and Sinha (2004) carried out first QEEG study to validate fronto subcortical dysfunction hypothesis and found increased theta coherence in OCD patients as compared to normal controls. In summary, these studies consistently indicate elevated activity in the orbitofrontal cortex in patients with OCD, with less consistent abnormalities in the caudate nucleus which decreases with the treatment.

Subsantance use disorder

Alcohol

PET and SPECT studies: Alcoholics showed decreased metabolism in prefrontal, parietal and temporal cortices (Volkow et al., 1992); increased metabolism in frontal regions during detoxification (Volkow et al., 1995) and significantly lower benzodiazepine distribution in frontal, anterior cingulate and cerebellar cortices (Abi-dargham et al., 1998).

MRS studies: Measures of visibility of brain alcohol in-vivo vary widely ranging from 21 to 100% (Moxon et al., 1991; Chiu et al., 1994; Meyerhoff et al., 1996; Petroff et al., 1990). NAA/Choline ratio thought to represent neuronal reserve was reduced in frontal, thalamus and
cerebellar areas (Jagannathan et al., 1996).

EEG studies: Among numerous QEEG studies, there is a consensus of increased beta relative power in alcoholism (Coger et al., 1979; Coger et al., 1978; Bauer and Hesselbrock, 1993; Gabrielli et al., 1982; Lakra and Nizamie, 2002). ERP study suggests a frontal lobe function anomaly in alcoholics (Basu and Nizamie, 2002).

Cannabis

PET and SPECT studies: Studies showed increased regional metabolism in the cerebellum during acute administration of THC, though, chronic use showed increased metabolism in the orbito-frontal cortex and cingulate gyrus (Volkow et al., 1996; Mathew et al., 1997).

EEG studies: Increased alpha power, especially, in anterior regions has been reported in withdrawal, as well as, after acute exposure to cannabis (Struve et al., 1989; Struve et al., 1994).

Opiates

PET and SPECT studies: Acute intake of morphine reduced global metabolism by 10% and by about 5 to 15% in telencephalic areas and the cerebellar cortex (London et al., 1990). Another study revealed significant increase in regional cerebral blood flow in cingulated, orbitofrontal and medial prefrontal cortices, and caudate nuclei (Firestone et al., 1996).

EEG studies: Increased alpha and decreased delta and theta have been reported in cocaine users in withdrawal (Alper et al., 1990; Alper et al., 1993; Cornwell et al., 1994; Prichep et al., 1996; Roemer et al., 1994).

Child psychiatric disorder

Autism

PET and SPECT studies: Studies have shown temporal and frontal lobe hypoperfusion (Mountz et al., 1995; Zilbovicius et al., 2000) and abnormal temporal cortex activation during auditory test (Muller et al., 1999; Boddaert and Zilbovicius, 2002).

fMRI studies: Increased activity in the bilateral inferior temporal gyrus, right thalamus, left superior temporal gyrus and left peristriate visual cortex has been found in subjects with autism, but not in healthy controls when they process facial features (identity) and facial expressions (emotion) (Critchley et al., 2000; Schultz et al., 2000; Ogai et al., 2003). Ring et al. (1999) and Luna et al. (2002) investigated executive function in autism, found dysfunctional integration of the dorsolateral prefrontal cortex, posterior cingulated cortex and parietal cortex. Recently, it was found that the language deficits in autism were subtended by anomalies in the dentatothalamo-prefrontal pathway and reverse dominance in the right hemisphere (Belmonte and Yureglun-Todd, 2003).

MRS studies: Studies have found evidence of decreased synthesis and increased degradation of prefrontal cortical membranes (Minshew et al., 1993) and reduced concentration of N-acetyl-asparate (NAA) in the amygdala, hippocampus, cingulate, cerebellum and wernicked area (Chugani et al., 1999; Otsuka et al., 1999; Hisaoka et al., 2001; Friedman et al., 2003) in subjects with autism.

EEG studies: A variety of EEG abnormalities may be seen in autistic disorder, including diffuse and focal spikes, paroxysmal spike and wave patterns, multifocal spike activity, and a mixed discharge. The prevalence of EEG abnormalities in autistic disorder (in the absence of a clinical seizure disorder) ranges from 10 to 83% and depends on the number of recordings and the nature of the sample obtained (Volkmar et al., 2005).

EP studies: Auditory brainstem evoked potentials in autistic disorder indicates no evidence of abnormalities in the auditory brainstem pathways. However, abnormalities of cognitive potentials, particularly, the auditory P300 (which represents the brain’s processing of sensory stimuli) have been demonstrated in autistic disorder. This presumably reflects abnormalities in higher auditory processing and neural pathways (Volkmar et al., 2005).

On the basis of these findings, it has been suggested that structural and biochemical abnormalities in neural network involving the fronto-temporoparietal cortex, limbic system, and cerebellum underlie the pathophysiology of autism.

ADHD

PET and SPECT studies: One of the fundamental underlying dysfunction in ADHD is thought to be within the dopamine system. Doughtery et al. (1999) in a SPECT study found a 70% increase in dopamine transporter density in the striatum of adult with ADHD. Another PET study by Ernst et al. (1999) showed a 48% increase of dopa accumulation in the right midbrain of children with ADHD. These studies indicate that over-production of dopamine in the midbrain could be related to increased re-uptake of dopamine in the stratum.

fMRI studies: Bush et al. (1999) on testing attention in a
group of adult ADHD patients found that they failed to activate the cognitive/attention division of the anterior cingulated gyrus. Similarly, Rubia et al. (1999) and Vaidya et al. (1998) have shown a failure of right prefrontal cortex activation during response inhibition paradigm in boys with ADHD vs. normal controls.

EEG studies: A large percentage of children with attention deficit problems (more than 90%) showed QEEG signs of cortical dysfunction, the majority displaying frontal theta or alpha excess, hypercoherence, and a high incidence of abnormal inter-hemispheric asymmetry (Marosi et al., 1992; Mann et al., 1992).

Dementia

Alzheimer's disease

SPECT studies: Studies have shown a temporoparietal hypoperfusion that is typically asymmetric (Goldenberg et al., 1989; Curran et al., 1993). Not all patients with AD showed temporoparietal hypoperfusion but AD can be accompanied by a great variety of perfusion patterns, depending on cognitive findings or the severity of illness (McMurdo et al., 1994).

PET studies: Like typical hypoperfusion, perfusion patterns visualized by SPECT, PET studies demonstrate a reduced cortical oxygen consumption or glucose metabolism, which is most pronounced and often asymmetrical in temporoparietal areas (Salmon et al., 1994). The observed metabolic changes are correlated with test performance, the severity of illness and duration of illness (Kwa et al., 1993).

EEG studies: Studies showed decreased of mean frequency (Brenner et al., 1986) of the dominant occipital activity of the alpha: theta ratio and an increase of relative (Coben et al., 1983) or absolute theta power, whereas, delta power increases in later stages of illness (Prichep et al., 1994).

WHERE WE STAND NOW

With the advent, functional neuroimaging raised hopes of providing the master key to unlock the even unsolved mystery of etiology of psychiatric disorders. But, in reality we are left stranded with bunch of research reports mostly reproving and strengthening earlier theories and hypothesis respectively. There is as yet no definitive and unambiguous evidence that any psychiatric brain imaging measure can provide a comprehensive and clearly incremental improvement to the existent approach to the treatment or even diagnosis of psychiatric illness. Does a pattern of imaging findings reflect a diagnostic entity or is it peculiar to a particular symptom profile? Does inconsistency within a diagnostic or symptom based grouping reflect state related psychological phenomena, or underlying etiological differences, perhaps seen at the level of the genotype?

Clearly, the difficulties are highly complex and will not be addressed by any single approach to experimental design but rather by the accumulation of data sets in which the correlations of brain activity with phenotypic and genotypic variables are examined. It has been possible, for example, to combine functional imaging with molecular genetics and developmental neurobiology. Such an approach, capitalizing on the identification of specific genetic mutations and co-occurring behavioral deficits may offer the precision that imaging studies require. This evolving alliance along with cognitive neuroscience may in near future identify neural networks and heralds a new era of knowledge about healthy brain function, the mechanism of disease, underlying etiology, unimagined innovations in therapeutic intervention and efficacious strategies for prevention.

RECOMMENDATIONS

1. To employ tasks on which performance of the patient and control group is matched.
2. Correlation studies should be hypothesis driven. It would be an improvement if hypothesis were made based on past data, for example, that temporal lobe abnormality might contribute to auditory hallucination because temporal lobe epileptics experience such symptoms.
3. Longitudinal investigation could help to resolve whether neuropsychological changes are related to neurodevelopmental or neuro-degenerative process, or an interaction of the two. Investigations with children and younger populations will be necessary to confirm neurodevelopmental theories and to demonstrate interactions with normal developmental processes.
4. To consider the need to obtain information about baseline or resting state of human brain.
5. To extend future studies beyond the receptor and neurotransmitter to look into second messenger system in the brain.
6. Application of synergistic approach that is, using different neuroimaging modalities complementarily to get more rewarding information to unravel the major issues in clinical neuroscience.
7. To integrate regional brain activity data with knowledge of underlying pharmacological mechanisms.

REFERENCES

Siegel B.V, Siever J.L, Trestman RL, Buchsbaum MS, Siegel BV (provide year). SPECT imaging of cognition in schizotypals, American Psychiatric Association Annual Meeting 95, Miami, Syllabus and Proceedings Summary, P. 76.

