Full Length Research Paper

Distribution and Antibiotics Susceptibility Pattern of Staphylococcus aureus Isolates from Health Care Workers in Owerri, Nigeria.

Nsofor, C.A.¹, Ohale, C.U.² and Nnamchi, C.I.³

¹Department of Biotechnology, Federal University of Technology Owerri, Nigeria
²Department of Microbiology, Imo State University of Owerri, Nigeria
³Department of Microbiology, University of Nigeria Nsukka, Nigeria

Accepted 15 September, 2015

The importance of Staphylococcus aureus as a persistent nosocomial and community-acquired pathogen has become of global health concern. It has a remarkable capacity of evolving different mechanisms of resistance to most antimicrobial agents. This study was aimed at determining the carrier rate of S. aureus among apparently healthy hospital staff members in five major hospitals in Owerri, Imo State Nigeria. A total of 156 nasal swab specimens collected from the health care workers (HCW) (78 males and 78 females) were cultured on manitol salt agar. S. aureus was identified by using standard microbiological techniques. Antibiotics susceptibility testing was carried out by Kirby-Bauer disk diffusion method. The overall carrier rate of S. aureus among the HCW was 47.4%. The antibiotic susceptibility test result shows that erythromycin was most active drug while highest resistance was observed in oxacillin. Statistical analysis showed that average number of resistance phenotypes per isolate was not significantly different in any of the sampled hospitals (P<0.05). The high carrier rate of S. aureus and antibiotics resistant observed in this study emphasizes the need for continues surveillance of the antibiotic susceptibility of S. aureus aimed at recommending appropriate and effective therapy in the treatment of staphylococcal infections.

Key word: Staphylococcus aureus, Antibiotic Resistance, Health Care Workers.

INTRODUCTION

Staphylococcus aureus is a major pathogen in skin and soft tissue infections; it has long been recognized as an important pathogen in human disease. Staphylococcal infections occur frequently in hospitalized patients and they have severe consequences, despite giving antibiotic therapy. One of the important sources of staphylococci for nosocomial infection is nasal carriage among hospital personnel. S. aureus permanently colonizes the anterior nares of about 20–30% of the general population. Almost 25% of health care workers (HCWs) are stable anterior nasal carriers of S. aureus. Hospital workers are more likely to be colonized than persons in the general population, presumably because of increased exposure (Shittu and Johnson 2006). In hospitals where hygiene conditions are not provided, nasal MRSA/methicillin-sensitive S. aureus (MSSA) colonization is seen in the hospital personnel and patients. With regard to MRSA/MSSA carriers, both the individual carriers themselves and the other people around them are at risk, and this bacterium leads to nasal colonization and can then propagate through contaminated hands and hospital materials (Kirecci E, and M. Miraloglu 2010).

The progressive emergence and rapid dissemination of antibiotic-resistant S. aureus and its association with the use and consumption of antibiotics constitute a major health concern and have been considered a global crisis.
Table 1. The Distribution of S. aureus Among the Health Care Workers of the Various Hospitals In Owerri

<table>
<thead>
<tr>
<th>Sample source</th>
<th>Males</th>
<th></th>
<th>Femalea</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. Sampled</td>
<td>No. Positive %</td>
<td>No. Sampled</td>
<td>No. Positive %</td>
</tr>
<tr>
<td>Federal Medical Center, Owerri</td>
<td>17</td>
<td>10 (58.8)</td>
<td>13</td>
<td>09(69.2)</td>
</tr>
<tr>
<td>General Hospital, Owerri</td>
<td>15</td>
<td>06(40.0)</td>
<td>15</td>
<td>04(26.7)</td>
</tr>
<tr>
<td>Ezem Medical Center, Owerri</td>
<td>13</td>
<td>06(46.2)</td>
<td>17</td>
<td>09(52.9)</td>
</tr>
<tr>
<td>St. Joseph's Hospital, Owerri</td>
<td>16</td>
<td>08(50.0)</td>
<td>20</td>
<td>07(40.0)</td>
</tr>
<tr>
<td>St. Dominic Hospital, Owerri</td>
<td>17</td>
<td>08(47.1)</td>
<td>13</td>
<td>07(53.8)</td>
</tr>
<tr>
<td>Total</td>
<td>78</td>
<td>36(48.7)</td>
<td>78</td>
<td>36(46.2)</td>
</tr>
</tbody>
</table>

(Shagufta and Jayaraji 2010). MRSA has been a major cause of nosocomial infections since the early 1960s. S. aureus constitutes a major public health threat and MRSA is currently the most commonly identified antibiotic-resistant pathogen in many parts of the world. Identification of patients and healthcare workers (in outbreak settings) colonized with S. aureus, combined with hand hygiene and other precautions have been shown to be effective in reducing the transmission and controlling the spread of staphylococcal infections. In the current study we conducted a cross sectional study to determine the nasal carriage rate of S. aureus among apparently healthy hospital staff members in five major hospitals in Owerri, Imo State Nigeria.

MATERIALS AND METHOD

Specimen Collection, Cultivation and Identification of S. aureus.

The study population included health care workers from five major hospitals in Owerri southeast, Nigeria who voluntarily accepted to enroll in the study. The sampling procedures were in accordance with guidelines of the National Health Research Ethics Committee, Nigeria (www.nhrec.net) and all subjects provided their oral informed consent before participating in the study; confidentiality was preserved.

Sterile cotton swabs were used for specimen collection. The specimens were obtained by rotating the swab gently, five times, in both nares of the study participants, so that the tip was entirely at the level of the nasal ostium (about 2.5 cm from the edge of the nare).

After collection of the swab specimens, it was inoculated onto manitol salt agar (Oxoid, England) within 1 h of sampling and was incubated at 37°C overnight. The plate was then left at room temperature and colonies were selected for the coagulase test using the slide method. Those colonies that were manitol fermenters (golden or cream coloured) and coagulase-positive were taken to be S. aureus, while those colonies that were white (mannitol non-fermenters) and coagulase-negative were considered to be other staphylococci (Cheesbrough, 2006).

Antimicrobial Susceptibility Testing

Laboratory antimicrobial susceptibility testing was performed using modified Kirby–Bauer disk diffusion method, which is recommended by the Clinical and Laboratory Standards Institute (CLSI, 2008). Colonies confirmed to be S. aureus were suspended in tryptone broth until matching with a standard turbidity (0.5 McFarland). The suspension was used to inoculate Mueller–Hinton agar (Oxoid, England). Antibiotic susceptibility testing for erythromycin (15 µg), oxacillin (1 µg), chloramphenicol (30 µg), tetracycline (30 µg), and gentamicin (10 µg) (Oxoid, England) was performed by Kirby–Bauer disk diffusion method. In this study Staphylococcus aureus ATCC 25923 was used as control (Cheesbrough, 2006).

Statistical Analysis

Comparative resistant rates for S. aureus strains from the different hospitals were statistically analyzed by T-test and results were considered significant at 95% confidence level.

RESULTS

A total of 156 nasal swab specimens of health care workers from five major hospitals in Owerri were collected and screened during the course of the study. From these, a total of 74 yielded Staphylococcus aureus in the culture, showing a general prevalence rate of 47.4% (Table 1). The prevalence of the S. aureus nasal carriage was slightly higher among the male HCWs (48.7%) than among the female HCWs (46.2%). The difference in the nasal carriage of S. aureus among the various hospital HCWs was not statistically significant. The identities of these Staphylococcal isolates were confirmed by standard biochemical methods. The antibiotic susceptibility test result shows that erythromycin was most active drug while highest resistance was observed in oxacillin. Statistical analysis showed that average number of resistance phenotypes per isolate was not significantly different in any of the sampled hospitals P<0.05 (table 2).
DISCUSSION

In this study, we found that 47.4% of the HCWs carried *S. aureus* in their anterior nares. It is worthy mentioning that all the HCWs who had a history of antibiotic usage during the period of our study were positive for staphylococcal nasal carriage. This put both the patients and the workers at risk. They might act as potential sources for the nosocomial spread of infection, especially to those with open wounds who are admitted to a surgical unit. The nasal carriage rate of *S. aureus* found in the present study is higher than those found in studies conducted in Gaborone Hospital, Botswana (35.8%) Truong et al., 2011, Valdivia Hospital, Chile (34.9%) Yazgi et al., 2003, a study in Ethiopia (28.8%) Shibabaw et al., 2014, in Chile (27.5%), Tejero et al 1991, a study in Nepal (25%), Shakya et al., 2010 and a study in Nairobi Hospital, Kenya (18.3%) Omuse et al., 2012. All of the differences between the different countries and hospitals may be explained by microbiological methods (from sampling technique to culture media) and local infection control standards.

Increased resistance to chloramphenicol, oxacillin and tetracycline observed in this study might be due to increased contact between the HCWs and patients and due to the replacement of sensitive strains by more virulent or resistant strains in hospital settings. The higher resistance of the isolates against these commonly used antibiotics might be due to the mutation or gene transfer of the strain, misuse and/or overuse of antibiotics, and a lack of standardized antimicrobial susceptibility testing before the prescription of drugs and increasing treatment costs. Antibiotic use provides selective pressure favoring resistant bacterial strains. Inappropriate use increases the risk of the selection and dissemination of antibiotic-resistant bacteria, which are placed at competitive advantage.

CONCLUSION

The single most important factor for preventing nosocomial infections is compliance of the health professionals with the sanitary and the antibacterial guidelines. To achieve this, the health professionals should be informed about the potential consequences of the nosocomial infections, both inside and outside the hospital, and their cooperation should be sought to diminish the carriage of *Staphylococcus aureus*. Simple preventive measures like hand washing before and after the patient examination, the use of sterile aprons and masks in the postoperative wards, awareness during the examination of immunocompromised patients, and avoiding touching one's nose during work, can reduce the disease transmission rate considerably. All the HCWs should be periodically educated and trained about the maintenance of hygiene and infection control and the effects of the use or rather, the misuse of antibiotics. Finally, there is a need for the development, adoption, and enforcement of appropriate control polices in the hospital wards/departments where there is no existing or effective infectious disease control.

REFERENCES

Shakya, B.S. and Shrestha, T.M. (2010). Nasal carriage rate of...

